一个专业的论文、出书、专利服务平台

品质、专业的

论文指导服务

SiC晶须增强SiCf/SiC复合材料的力学性能

时间:2021-08-28分类:冶金工业

  摘要:以连续SiC纤维为增强体,采用前驱体浸渍裂解工艺,在复合材料基体中引入SiC晶须制备出多级增强的SiCf/SiC-SiCw复合材料,并采用化学气相渗透工艺在SiC晶须表面制备BN界面层,研究了SiC晶须及其表面BN界面层对复合材料的性能影响。结果表明:在复合材料中引入SiC晶须后,由于晶须的拔出、桥连及裂纹偏转等作用增加了裂纹在基体中传递时的能量消耗,使SiCf/SiC复合材料的压缩强度有明显提高,当引入体积分数为20%的SiC晶须时,复合材料压缩强度提高了22.6%,可达673.9MPa。通过化学气相渗透工艺在SiC晶须表面制备BN界面层后,复合材料的拉伸强度、弯曲强度和断裂韧度分别为414.0,800.3MPa和22.2MPa·m1/2,较SiC晶须表面无界面层时分别提高了13.9%,8.8%和19.0%。

SiC晶须增强SiCf/SiC复合材料的力学性能

  姜卓钰; 束小文; 吕晓旭; 高晔; 周怡然; 董禹飞; 焦健, 材料工程 发表时间:2021-07-05

  关键词:陶瓷基复合材料;SiC晶须;力学性能;BN界面层

  近年来,随着发动机推重比的不断提高,燃烧室、涡轮与加力燃烧室等热端部件对材料的耐高温性提出了更高的要求。相比传统的高温合金材料,SiCf/SiC复合材料可以有效减轻部件质量,减少冷空气流量,显著提升工作温度,因而是制备高性能发动机高温构件的理想材料[1-2]。而SiCf/SiC复合材料在高温使用过程中,基体会形成孔洞和裂纹等缺陷,导致材料脆性大,损伤韧性不足,疲劳寿命短,难以满足下一代发动机材料疲劳性能的需求[3-5]。因此现阶段有必要探索微纳米增强体多级增韧等技术途径,开发更耐高温、更高损伤容限的SiCf/SiC复合材料。

  纳米增强体作为第二增强体引入到复合材料基体中,可通过裂纹偏转及桥连等增韧机制,从多尺度提高增强相的增强效果,进一步提高复合材料的耐氧化性能、力学性能等。SiC晶须(SiCw)是一种性能优异的纳米增强体,将其引入到纤维布层间和纤维束间的脆性基体中,可有效增加裂纹扩展距离,改善微区基体的脆性,提高微区基体的韧性,从而进一步提高陶瓷基复合材料的力学性能[6-7]。同时由于纳米增强体可以阻碍基体脆性裂纹中的氧分子的流通,因此能够有效改善陶瓷基复合材料的高温耐氧化性能[8]。

  Hui等[9]在Cf/SiC复合材料中引入了SiC晶须后,复合材料的性能明显提高。而采用SiC晶须或纳米纤维作为增强体时,易与SiC基体之间形成强结合,不利于发挥SiC纳米增强体的作用,因此,需要在纳米增强体表面沉积一层界面层[10]。研究者采用CVD法在纳米纤维表面沉积了热解碳(PyC)界面层,发现复合材料的性能得到明显改善[11-12]。然而PyC界面层的起始氧化温度为450℃,作为界面层时不利于复合材料的长时高温性能[13]。而六方的BN界面层晶体结构与PyC类似,由于其起始氧化温度较高,作为界面层时具有更加优异的抗氧化性能,因而经常被用作SiCf/SiC复合材料中的界面相[14-15]。本工作采用前驱体浸渍裂解工艺制备连续SiC纤维和SiC晶须多级增强的SiCf/SiC-SiCw复合材料,并在SiC晶须表面制备BN界面层,研究SiC晶须及BN界面层对复合材料力学性能的影响。

  1实验材料及方法

  1.1实验材料

  增强体纤维采用国产二代SiC纤维;在SiC纤维表面沉积BN界面层,作为纤维与基体之间的界面相;SiC晶须由浙江金刚云纳米纤维科技有限公司提供,具体参数见表1。

  聚碳硅烷(Polycarbosilane,PCS)为橙黄色液体,由中国科学院化学研究所提供,固化温度为120~240℃。

  1.2样品制备

  SiCf/SiC复合材料的制备:①在SiC纤维表面涂刷PCS树脂制备预浸料;②将预浸料热压固化制备出平板实验件;③高温烧结得到多孔平板;④采用前驱体浸渍多孔平板;⑤循环步骤③和④进行致密化。循环9次制备出复合材料平板件(下同),将本试样标记为S1。

  SiCf/SiC-SiCw复合材料的制备:①分别将体积分数为10%和20%SiC晶须添加到PCS中;②将混合物装入尼龙罐并放置在球磨机上球磨制备混合料浆,球磨机转速设置为160r/min,球磨5h得到混合料浆;③将混合料浆涂刷至SiC纤维上得到预浸料。随后的热压、高温烧结、浸渍及循环过程同S1制备步骤中②~⑤。将SiC晶须体积分数为10%和20%的试样分别标记为S2和S3。

  SiCf/SiC-SiCw(BN)复合材料的制备:本样品中晶须含量、料浆制备、预浸料制备、热压固化及高温烧结方法同S2。不同的是本样品初次烧结后将样品放入化学气相沉积炉进行BN沉积,结束后再采用前驱体浸渍。随后循环高温烧结-浸渍过程进行致密化,将本试样标记为S4。

  1.3测试表征

  试样的密度和显气孔率采用排水法进行测试;弯曲强度采用MTS810材料实验系统进行测试,参照标准为GB/T6569-2006;断裂韧度采用微机控制电子万能试验机C45.105进行测试,参照标准为GB/T23806-2009;拉伸强度采用Instron8801型万能材料试验机进行测试,参照标准为GJB6475-2008;压缩强度采用微机控制电子万能试验机C45.105进行测试,参照标准为GJB6476-2008。采用NovaNanoSEM450扫描电子显微镜(SEM)对样品的微观形貌进行观察。

  2结果与讨论

  图1为SiC纤维表面制备了界面层后的微观形貌和EDS图谱。可见沉积了界面层后,SiC纤维单丝之间并未粘连,SiC纤维保留了较为光滑致密的表面。由图1插图可见,SiC纤维的直径约13μm,其外层包裹着一层均匀的界面层,界面层与SiC纤维结合紧密,可避免界面层从纤维表面脱落。由EDS结果可以看出,该界面层为BN。

  将SiC晶须混入PCS前驱体制备出混合料浆,其微观形貌如图2(a)所示。由图2(a)可见混合料浆中SiC晶须亮度较高。由高倍放大形貌可见,高亮度SiC晶须具有较好的线性均匀性,其直径约为100nm。图2(b)为混合料浆的面扫描和EDS能谱分析结果,可见混合料浆中C元素与Si元素均匀分布,表明SiC晶须在混合料浆中分散得较为均匀。

  以图1所示沉积界面层后的SiC纤维为连续增强体,采用PCS前驱体和图2所示的混合料浆制备复合材料S1和S2。对复合材料进行物理性能测试,结果如表2所示。由表可见,S1和S2样品的密度和孔隙率较为接近。但在S2样品中引入了SiC晶须后,复合材料中基体的体积有所增加,导致S2样品的纤维体积分数相比于S1有所降低。

  表3为S1和S2样品的力学性能结果。可见相比于S1样品,S2样品的压缩强度提高了14.6%,但其拉伸强度、弯曲强度及断裂韧度均有所降低。为了验证引入SiC晶须对SiCf/SiC复合材料的压缩强度的影响规律,将混合料浆中SiC晶须的含量提高至20%,制备出S3复合材料,其物理性能如表2所示。对S3样品的压缩强度进行测试,结果如图3所示。可见当SiC晶须含量提高至20%时,复合材料压缩强度进一步提高至673.9MPa,比S1样品高22.6%。

  图4为S1~S3样品压缩断口的微观形貌。由图4(a)可见,S1样品受压缩载荷产生裂纹后,横向纤维束层间的基体层发生断裂,层内纤维延续性较好,基体断口较为平整。由图4(b)可见S2样品压缩断口中出现多层横向纤维断口,基体断口高低起伏较为明显。同样,在S3样品断口中,不同层断裂的横向纤维和断口处基体的起伏更明显(图4(c))。

  当复合材料基体中受载荷作用形成微裂纹时,分布在基体中的SiC晶须与基体发生脱粘拔出(图5(a))、桥连(图5(b))及裂纹偏转(图5(c))等作用,使得裂纹尖端应力松弛,减缓了裂纹的扩展速度,延长扩展路径,消耗更多的能量,从而使复合材料具有更高的强度[16-18]。结合图4可见,S1样品基体中未添加SiC晶须,因此复合材料基体产生裂纹后,在层内的基体中迅速扩展,导致复合材料失效。而在S2和S3样品中,裂纹在复合材料基体中扩展时一般较难穿过晶须,更容易绕过晶须并沿晶须表面扩展,即发生了裂纹偏转作用。这种偏转作用使基体中的裂纹发生层间扩展,避免了层内迅速扩展,延长扩展路径,降低了裂纹扩展时的拉应力,增加了裂纹扩展过程中的能量消耗[19];当复合材料出现较大裂纹时,SiC晶须的拔出和桥连作用也会增加裂纹扩展时的能量消耗,从而使得复合材料的压缩强度明显提高。

  同时,在S1样品压缩断口的微观形貌(图4(a))中,明显可见与基体完全脱粘的SiC纤维单丝。S2样品中SiC纤维被基体包裹,但SiC基体与纤维之间存在明显间隙(图4(b)中箭头所示)。由图4(c)可见S3样品中纤维被基体完全包裹,且基体与纤维的结合较为紧密,因此在S1~S3样品中基体与纤维的结合强度依次增加。

  图6为S1和S2样品在拉伸过程中典型的应力-应变曲线。由图可见S2样品在弹性变形阶段的曲线斜率明显大于S1样品,表明晶须的引入使得S2样品的模量有所提高[20-21]。在复合材料中引入SiC晶须后,其模量(E)可通过式(1)计算得出[12]。E=VfEf+VwEw+VmEm(1)式中:Vf,Vw和Vm分别代表纤维、晶须和基体的体积分数;Ef,Ew和Em分别代表纤维、晶须和基体的模量。

  结合表2可知S2样品的纤维体积分数明显小于S1样品,因此S2复合材料模量的提高是由于复合材料基体中引入了高模量SiC晶须。

  图7为S1和S2样品拉伸断口的微观形貌。可见两个样品的断口处有不同程度的纤维拔出。S1样品拉伸断口的纤维拔出较长,而S2复合材料的拉伸断口较为平整且纤维拔出较短,这与图6中S2的应变较小相符。由此可见相比于S1样品,S2样品倾向于脆性断裂模式;同时,由表2可见S2样品中连续增强纤维的体积分数有所降低,因此其拉伸强度、断裂韧度及弯曲强度有所降低。这种断裂模式的变化可能是由于在复合材料基体中直接引入SiC晶须后,晶须与SiC基体形成强结合,进而使SiC基体与连续增强纤维的结合强度较高,增加了载荷由基体向增强体的传递效率,导致连续增强纤维拔出困难[12,20]。因此可在SiC晶须表面制备BN界面层,弱化基体与纤维的界面作用[22-23]。

  沉积BN后SiC晶须的直径约为222.5nm(图8(a))。可见沉积BN界面层后晶须表面光滑且无明显凸起,SiC晶须直径有明显增加。由图8(b)能谱分析结果可见,除Si和C元素外,SiC晶须表面明显含有B和N元素,表明SiC晶须表面成功制备了BN界面层。

  S4样品的基本物理性能如表2所示。相比于S2样品,S4样品的纤维体积分数与其接近,但S4样品的密度有所降低,孔隙率略有增加,这是由于在BN沉积过程中,在S4样品内部局部区域形成了体积较小的封闭孔。

  图9为S4和S2样品的力学性能对比,可见S4样品的拉伸强度、弯曲强度及断裂韧度分别为414.0,800.3MPa和22.2MPa·m1/2,比S2样品分别提高了13.9%,8.8%和19.0%。由S4样品微观形貌(图10)可见S4样品拉伸断口起伏明显,纤维拔出较长。表明BN界面层有效地缓解了增强体与基体间较强的结合作用,更有利于纤维拔出,因此在典型的应力-应变曲线中(图11),S4样品的最大载荷和断裂应变相比于S2样品均有明显提高。

  3结论

  (1)SiC晶须增强复合材料受外界载荷产生裂纹时,晶须的拔出、桥连及裂纹偏转等作用增加了裂纹在基体中传递时的能量消耗,使SiCf/SiC复合材料的压缩强度有明显提高,当引入体积分数为20%的SiC晶须时,复合材料压缩强度提高了22.6%,可达673.9MPa。

  (2)SiC晶须表面制备BN界面层后,可以降低增强体与基体的结合强度,有利于SiC晶须和纤维的拔出。因此S4样品的拉伸强度、弯曲强度及断裂韧度分别为414.0,800.3MPa和22.2MPa·m1/2,相比于S2样品分别提高了13.9%,8.8%和19.0%。

获取免费资料

最新文章