【摘要】:随着GPS技术的进一步成熟,GPS系统广泛地应用于民用领域,并日益发挥了其卓越的技术优势,文章对GPS技术在数字化地形测量分析中的应用进行了分析。
【关键词】:GPS技术,数字化,核心期刊论文发表,地形测量
引言
全球定位系统(Global Positioning System-GPS)卫星定位技术的发展,使测绘科学发生了巨大的变革,长期以来用测角、测距、测水准为主体的常规地面定位技术,正在逐步被以一次性确定三维坐标的、高速度、高效率、高精度的GPS技术所代替。GPS定位技术的高度自动化和所达到的定位精度及其潜力使广大测量工作者产生了极大的兴趣。近两年来相关测绘技术的发展并先后应用于地形测量也为地形测量的准确性和科学性提供了保障,在此基础上开展GPS技术数字化地形测量应用研究对地形测量有着重要的意义。
一、GPS技术的定义
GPS系统包括3大部分:空间部分-GPS卫星星座;地面控制部分-地面监控系统;用户设备部分-GPS信号接收机。空间卫星系统由均匀分布在地球6个轨道平面上的24颗高轨道工作卫星构成,卫星每2小时沿近圆形轨道绕地球一周,由星载高精度原子钟控制无线电发射机在"低噪声窗口"(无线电窗口中,至8区间的频区天线噪声最低的一段是空间遥测及射电干涉测量优先选用频段)附近发射L1、L2两种载波,向全球的用户接收系统连续地播发GPS导航信号。地面监控系统由均匀分布在美国本土和三大洋的美军基地上的5个监测站、1个主控站和3个注入站构成。
该系统的功能是:监控站用GPS接收系统测量每颗卫星的伪距和距离差,采集气象数据,并将观测数据传送给主控点。主控站接收各监测站的GPS卫星观测数据、卫星工作状态数据、各监测站和注入自身的工作状态数据,及时编算每颗卫星的导航电文并传送给注入站;控制和协调监测站间,注入时间的工作,检验注入卫星的导航电文是否正确以及卫星是否将导航电文发给了GPS用户系统;诊断卫星工作状态,改变偏离轨道的卫星位置及姿态,调整备用卫星取代失效卫星。注入站接受主控站送达的各卫星导航电文并将之注入飞越其上空的每颗卫星用户接收系统主要由以无线电传感和计算机技术支撑的GPS卫星接收机和GPS数据处理软件构成。
二、GPS控制测量
GPS控制测量工作与经典大地测量工作相类似,按其性质可分为外业和内业两大部分。其中:外业工作主要包括选点(即观测站址的选择)、建立观测标志、野外观测作业以及成果质量检核等;内业工作主要包括GPS测量的技术设计、测后数据处理以及技术总结等。如果按照GPS测量实施的工作程序,则大体可分为这样几个阶段:技术设计;选点与建立标志;外业观测;成果检核与处理。
1.作业方法:采用两台(或两台以上)接收机,分别安置在一条(或数条)基线的端点,根据基线长度和要求的精度,按GPS测量系统外业的要求同步观测四颗以上的卫星数时段,时段长度根据测量等级确定。
2.定位精度:基线测量的精度可达±(5mm+1ppm×D),D为基线长度,以公里计。
3.作业要求:采取这种作业模式所观测的独立基线边,应构成闭合图形(如三角形、多边形),以利于观测成果的检核,增强网的强度,提高成果的可靠性和精确性。
4.适用范围:建立国家大地控制网(二等或二等以下);建立精密工程控制网,如桥梁测量、隧道测量等;建立各种加密控制网,如城市测量、工程点测量、道路测量、勘界测量等;观测中至少跟踪四颗卫星,同时基线边一般不要超过15km。
5.注意事项:所有已观测基线应组成一系列封闭图形,已利于外业检核,提高成果可靠度。
三、数字化地形测量的组织
数字化地形测量是工程施工与规划的基础,同时由于数字化地形测量需要较高的准确性和精确性,因而需要良好的组织。具体来说主要包括:
1.测量工序
地形测量的工序主要分为两个环节:一是控制测量与计算机辅助平差计算;二是碎部数据采集与软件编图成图。两个环节间以数据传输为纽带,即可平行施工又可顺序施工,与传统地形测量相比,减少了大量的中间生产环节。
2.测量方案
数字化地形测量项目的作业方案根据仪器设备条件确定,仪器设备条件不同,作业方案变化各异,一般可选用静态GPS网作基本控制,导线(网)动态作加密控制,支导线(点)补充测站点,全站仪动态碎部数据采集,进而计算机软件机助成图的作业方案。一定条件下,大比例尺数字化地形测量可以一次性全面布网至测站点,并且可以直接先测图而不受先控制后测图逐级加密等测量原则的约束。
3.测量方法
在生产工序上,数字化地形测量不一定要遵守先控制、后测图的原则,控制测量、碎部测图可以同时进行,甚至可以是先测图后控制,只是后者需将碎部成图以控制点为基准借助成图软件进行测站纠正。在控制点点之记的制作上,数字化地形测量不一定要将其作为一个专门工作来进行,可依据最终成图编绘点之记"碎部测图在数字化地形测量中只是一个数据采集的过程成图大量的工作已从外业转移到了内业,目前,碎部成图作业方法较多,因人而异。
四、GPS技术在数字化地形测量相关技术中的应用
1. GPS技术在数字化地形测量中的应用
1.1 常规测量方法的缺陷
(1) 测量范围不广。一般性的借助人力或一般机械进行测量的方法,由于其技术含量有限,操作起来不仅耗费人力、物力,而且测量范围有限。
(2) 搜集到的用于路线测量控制的起算点间一般很难保证为同一测量系统,国测、军测、城市控制点往往混杂一起,这就存在系统间的兼容性问题,如果用不兼容的起算点,势必影响测量质量。
(3) 国家大地点破坏严重,影响测量作业。由于国家基础控制点,大多为20世纪五六十年代完成,经过30多年,有些点由于经济建设的需要被破坏,有些点则由于人们缺乏知识遭人为破坏。在这些地区进行路线测量作业,往往在50km以上均找不到导线的联测点。这样路线控制测量的质量得不到保证。
(4) 地面通视困难往往影响常规测量的实施。一般地形的控制点要求布设300m范围内。但由于通视的原因,这一条件难以满足,甚至在大范围密林、密灌及青纱帐地区,根本无法实施常规控制测量。
2. GPS用于数字化地形测量的特点
(1) 测量范围广。GPS技术由于由高策低,测量范围可以很大。可按需布设控制网,简化加密级别,省去联测过渡点。
(2) 测量精度高。随着GPS技术的日益成熟和快速发展,现今,生产性作业精度可达1~Z10-6mm,国外可达零点几10-6mm,可建立比常规测量精度更高的控制网。
(3) 各个联测点之间不要求通视,不必建造高规标。
(4) 观测自动化程度高。外业用电纽操作,内业用计算机处理数据,作业时间短,效率高。
(5) 测量成果可得三维地心坐标,优于常规测量的平面坐标和高程系统分离状况,有利于宇航科学、导弹发射等空间科学的应用。
(6) 星座布置完成后,可24h观测,在雨、雾、雪等条件下亦可全天候作业。
3. 高程控制质量的可靠度分析
在进行控制测量时,由于没有收集到水准点高程,所以高程控制采用国家二等三角点高程为起算数据,与布设的GPS控制点进行高程拟合,求得控制点GPS高程。由于GPS高程没有与水准点高程进行联测、检核。所以其可靠程度是人们最关心的问题。实际上人们已经通过大量的试验证明:如果平差结果的各项精度和指标达到规范要求,GPS高程拟合的模型是全理的,拟合的结果能满足四等水准测量精度的要求。检验方案包括同步环检验,异步环检验和重复基线检验。
结束语
GPS技术是现代科学技术的结晶,它是卫星技术、微电子技术、计算机技术和天文观测技术等高科技尖端技术的综合产物,GPS技术的出现与不断完善将会进一步推进地形测量技术的改进,完善和丰富地形测量方法。
参考文献:
[1] 孟继红, 何秀珍. 《数字化地形测量的几个问题探讨》,载《地矿测绘》, 2005,3.
[2] 刘慧. 《论GPS在公路工程测量中的应用》,载《科技咨询导报》, 2007, 5.
[3] 王志武. 《浅谈地形测量中计算机技术的应用》,载《时代经贸》, 2007, S9.