摘要:甲烷(CH4)厌氧氧化是稻田土壤中消减温室气体排放的重要过程。本试验选择内陆性南京稻田和滨海性上海崇明岛围垦稻田,比较研究稻田耕层(0~10 cm)和深层(50~60 cm)土壤中亚硝酸盐型 CH4厌氧氧化(n-DAMO)潜力的差异及其微生物驱动机制。结果表明,南京稻田耕层土壤的 n-DAMO 速率 为 3.51 µmol 13CO2·g-1 ·d-1, 显 著 高 于 围 垦 稻 田 耕 层 土 壤 (1.43 µmol 13CO2·g -1 ·d-1)。两种类型稻田耕层土壤的 n-DAMO 速率均显著高于深层土壤。南京稻田和围垦稻田 M. oxyfera-like 细菌的 16S rRNA 基因拷贝数分别为 (2.31~4.82)×107 和(0.89~2.12)×107 copies·g -1,与亚硝酸盐型 CH4 厌氧氧化速率显著正相关。相关性分析发现,土壤有机碳、总氮、无机态氮是稻田 n-DAMO 速率分异的重要原因。综上所述,内陆性稻田土壤 n-DAMO 氧化潜力较高,其主要由较高的土壤本底碳、氮水平和功能微生物丰度所致。
关键词:围垦稻田;厌氧 CH4氧化; M. oxyfera 细菌丰度;深层土壤
薛梦琪; 周聪; 饶旭东; 谢晴; 张耀鸿 南京信息工程大学学报(自然科学版)2021-12-16
0 引言
甲烷(CH4)是一种重要的温室气体,具有很强的红外吸收带,其百年时间尺度上的增温潜力是二氧化碳(CO2)的 28~34 倍[1],占全球变暖贡献率的 20%[2]。稻田是主要的 CH4 排放源,每年向大气释放 25~300 Tg [3],占全球甲烷排放量的 10%~20%[4-5]。氮肥的施加导致稻田产生高浓度的 NOx -,为反硝化型厌氧甲烷氧化细菌和古菌提供了理想的生境[6]。目前认为,亚硝酸型厌氧甲烷氧化(nitrite dependent Denitrifying Anaerobic Methane Oxidation, n-DAMO)过程由 NC10 门的 Candidatus Methylomirabilis oxyfera 细菌介导,该微生物具有内产氧功能,可单独将 NO2 -还原,同时将 CH4氧化为 CO2。n-DAMO 过程多发生于淡水湿地[7]、湖泊生态系统[8]等,近期在海洋生态系统中也检测到了 nDAMO 过程的存在[9]。 Wang 等[10]报道滨海潮间带生态系统 DAMO 细菌与古菌可以共存,从而使潮间带生态系统成为重要的 CH4汇。进一步发现 n-DAMO 过程在 CH4循环过程中起着更重要的作用。
湿地生态系统中 n-DAMO 细菌介导的 CH4 厌氧过程受到土壤母质、氮(N)水平、施肥、盐分以及湿地剖面深度等因素的影响,其在稻田土壤中氧化作用表现强烈。Wang 等[10]发现在原位稻田湿地中, n-DAMO 细菌的数量与 NO3 -浓度呈显著正相关。施入稻田的氮肥反硝化会产生 NO2 -,可以作为电子受体促进土壤厌氧微域的 n-DAMO 反应[6]。研究还发现:湿地系统不同深度土壤中 nDAMO 细菌的群落组成和活性存在明显差异[11];一般认为,相较于表层土壤,湿地深层土壤更有利于 n-DAMO 细菌的分布和 n-DAMO 反应的发生[12],可能是由深层土壤长期处于较稳定的缺氧状态所致。n-DAMO 细菌群落在滨海生态系统中的分布存在较强的空间异质性,其在杭州湾和长江口滨海区中 n-DAMO 细菌的数量和活性均与土壤盐度呈显著负相关[13-14],其机理尚不清楚。
滨海湿地处于海陆交错带,具有海洋性和陆地性双重特征,当前受人类活动的影响日益严重。随着经济的发展和人口的增长,人类对土地的需求日趋迫切,滨海滩涂围垦造田成为解决土地问题的有效途径。围垦后的湿地自然条件相对稳定、不再受海水潮汐的影响,形成与自然滩涂湿地明显不同的独特生境。在此基础上,人工灌溉、耕作、施肥、水稻种植等农业措施加速了围垦稻田的熟土化进程:由海洋性滩涂逐渐向陆地性农田演替,土壤的物理、化学和生物特征发生了显著改变,但与内陆性稻田存在着明显差别。这种围垦植稻驱动的熟土化作用对土壤甲烷氧化过程可能会产生重要影响。那么,处于熟土化进程中的围垦稻田,其甲烷厌氧氧化潜力有何特征?与典型内陆性稻田相比,其甲烷厌氧氧化速率变化的主控因素是什么?是否与功能微生物群落结构及数量特征之间存在内在关系?
鉴于此,本试验选取两个不同类型的稻田:微碱性 N 贫瘠的长江口崇明围垦稻田和微酸性 N 丰富的南京稻田,研究其表层和深层土壤的 CH4厌氧氧化速率及 nDAMO 细菌的丰度,探明在土壤母质、pH 值、N 水平以及盐分等差异较大的稻田土壤环境中,n-DAMO 反应速率及其微生物学机理,进一步阐明其分异规律,为稻田 CH4减排提供参考依据。
1 材料与方法 1.1 土壤样品采集
本研究选取上海市崇明岛东滩湿地(121.92°E,31.50°N)围垦 16 年稻田(WK)与南京信息工程大学农业气象试验站(118.86°E,32.16°N)荒地改种稻 15 年稻田(NJ)。在每个稻田内以 S 形设置 6 个采样点,各采样点间距 15m。用土钻取 0~60 cm 深度的土柱,取出 0~10 cm 和 50~60 cm 的土层样品,并将相同深度的土样充分混合,放入冰盒中带回实验室冷冻保存备用。
1.2 土壤理化性质测定
土壤全氮( TN) 含量采用半微量凯氏定量法测定。土壤总有机碳( TOC) 含量采用浓硫酸-重铬酸钾消煮-硫酸亚铁滴定法测定。土壤铵态氮和硝态氮含量用 2 mol/L KCl 溶液浸提后,采用 AA3 流动分析仪测定。土壤 pH 值和 EC 值分别采用数字酸度计和电导仪测定。
1.3 厌氧 CH4氧化速率测定
将 5 g 土壤样品放入 40 mL 的培养瓶后加入 10 mL 的超纯水,胶塞密封后抽真空-充氩气重复进行 3 次,以达到严格厌氧状态。室温 25 ℃避光条件下 120 r/min 转速预培养 2d,以尽可能去除残余 O2 的影响。预培养结束后,再次抽真空-充氩气 2 次,然后将每个土样分成 3 组,分别进行底物添加处理:1) 添加 Ar;2) 添加 13CH4;3) 添加 13CH4 + NO2 -。每个处理 3 次重复。添加的 13CH4相对丰度为 99%,瓶内顶空剩余体积以氩气补充,使得培养瓶顶空 13CH4 最终质量分数为 10%。添加的 NO2 -最终浓度分别为 0.5 mmol。全部培养瓶在室温 25 ℃ 避光条件下 120 r/min 转速正式培养 7d。
培养结束后,用气相色谱仪-质谱仪连用法测定瓶中 13CO2 的产生量。处理 1)为对照组,如果瓶中 13CO2 的相对丰度处于自然丰度水平(1.1%),说明试验结果可信度高;用处理 3) 减去处理 2)中 13CO2产生量,进一步计算亚硝酸型厌氧甲烷氧化(n-DAMO)速率。
1.4 荧光定量 PCR 分析
用 Fast DNA Spin kit for soil 提取试剂盒 (MP Biomedicals, USA) 提取土壤样品中的总 DNA。取部分 DNA 提取液用分光光度计(NanoDrop ND-1000 UVVis)测定 DNA 浓度和纯度。土壤 DNA 保存于-80℃冰箱待用。在 CFX96 Real-Time PCR System(Bio-Rad 公司)扩增仪上进行荧光定量 PCR 扩增。测定土壤样品中总细菌和 M. oxyfera 菌的 16S rRNA 基因拷贝数。总细菌基因扩增所用引物为细菌 V4+V5 高变区通用引物 515F/907R;M. oxyfera 菌扩增所用引物为 qP1F/qP1R。反应体系为 20.0 µL,包括 DNA 样品 1.0 µL, Premix TaqTM 10 µL,前后引物各 1.0 µL,超纯无菌水 7.0 µL。扩增条件为:预变性 95 ℃,10 min;变性 95 ℃,30 s;退火 55 ℃,30 s;延伸 72 ℃,30 s; 40 个循环。根据质粒梯度浓度制成的标准曲线计算目的基因的拷贝数。
1.5 数据统计与分析
用 SPSS 19.0 软件进行统计分析,通过单因素方差分析及多重比较、相关性分析(Pearson)进行土壤理化性质、氧化速率、微生物丰度的差异性以及相关性检验,显著水平 α = 0.05。
2 结果与分析 2.1 不同类型稻田土壤的理化性质
南京稻田和崇明围垦稻田土壤理化性质如表 1 所示。南京稻田表层土壤中总有机碳(TOC)、总氮(TN)、NH4 +、NO3 -的含量均显著高于深层土壤,表明农业施肥、农作物生长等对耕层土壤有机质和 N 水平影响很大。崇明围垦稻田中表层土壤 TOC 显著高于深层土壤,而 TN、NH4 +、NO3 -的含量在表层和深层之间无明显差异,且围垦稻田这些指标均显著低于南京稻田对应土层,说明围垦稻田受土壤母质、成土化进程等影响,其土壤肥力普遍低于内陆稻田。相反,围垦稻田中表层和深层土壤的 SO4 2-含量、EC 值和 pH 值均显著高于南京稻田,表明围垦区稻田仍具有明显的海洋性特征。
2.2 稻田土壤的 13CO2丰度变化和 CH4厌氧速率
本试验中,培养瓶密闭气体中 13CH4 的起始质量分数约为 10%,随着厌氧培养的进行将转化为 13CO2,根据其质量分数和丰度变化与培养时间进行计算,可得出培养时间内的平均 n-DAMO 速率。图 1 结果显示,两种类型土壤在只供应 Ar 气体条件下厌氧培养后,其土壤 13CO2 丰度保持在自然丰度水平(1.08%);在供应 13CH4和 13CH4+NO2 -条件下,土壤 13CO2丰度均有不同程度的升高,表明所试两种土壤均发生了甲烷厌氧氧化反应。其中,只供应 13CH4 条件下 13CO2丰度显著高于 Ar 处理,表明土壤中存在本底性电子受体可促进甲烷厌氧氧化过程。在供应 13CH4+NO2 -条件下,13CO2丰度显著高于 13CH4处理,表明两种所试土壤均发生了以 NO2 -为电子受体的厌氧 CH4氧化作用。在此底物供应条件下,南京稻田土壤 13CO2 丰度达 4.57%~5.87%,明显高于围垦稻田的对应土层(4.12%~4.69%),暗示了南京稻田土壤可能具有较大的 NO2 -型厌氧 CH4 氧化潜力。图 2 结果显示,南京稻田表层(NJ10)和深层(NJ60)土壤的 CH4厌氧氧化速率分别为 3.51 和 2.45 µmol 13CO2·g-1·d-1,围垦稻田表层(WK10)和深层(WK60)土壤的 CH4 厌氧氧化速率则分别为 1.43 和 1.36 µmol 13CO2·g-1·d-1。可以看出,南京稻田表层土壤的 CH4 氧化速率比围垦稻田高出 59%,而深层土壤则高出 44%,表明滨海围垦稻田的亚硝酸盐型 CH4 厌氧速率均显著低于内陆南京稻田。
2.3 稻田土壤中 M. oxyfera 菌和总细菌的 16S rRNA 基因丰度
目前认为,以 NO2 -为电子受体的 CH4 厌氧氧化过程由 NC10 门中的 M. oxyfera 细菌催化进行。南京稻田表层中 M. oxyfera 细菌的 16S rRNA 基因拷贝数为 4.82×107 copies·g-1,比深层土壤的基因拷贝数高出 1.1 倍(图 3)。围垦稻田表层中 M. oxyfera 细菌的 16S rRNA 基因拷贝数为 2.12×107 copies·g-1,比深层土壤的基因拷贝数高出 1.4 倍。可以看出,南京稻田 M. oxyfera 细菌的 16S rRNA 基因拷贝数显著高于围垦稻田土壤。
对稻田土壤总细菌的 16S rRNA 基因拷贝数进行了测定。其变化范围为 2.12-3.13×108 copies·g-1,比 M. oxyfera 细菌的 16S rRNA 基因拷贝数高出 1 个数量级。其中,南京稻田耕层土壤的总细菌 16S rRNA 基因拷贝数显著高于其它三个土样。将 M. oxyfera 细菌与总细菌的 16S rRNA 基因拷贝数相比,可得出 M. oxyfera 细菌的相对丰度。发现南京稻田耕层和深层土壤 M. oxyfera 细菌相对丰度为 1.5%和 0.9%,围垦稻田则分别为 0.9%和 0.4%。
2.4 厌氧 CH4氧化速率与基因丰度和理化性质的相关性分析
对厌氧 CH4氧化速率与 M. oxyfera 细菌的 16S rRNA 基因拷贝数进行相关分析,结果表明,亚硝酸型厌氧 CH4氧化速率与 M. oxyfera 细菌的 16S rRNA 基因丰度呈显著正相关(图 4),说明功能微生物的数量很大程度上决定了土壤 CH4 厌氧氧化能力。
对厌氧 CH4 氧化速率与土壤理化性质进行回归分析,结果表明,土壤 CH4 厌氧氧化速率与土壤 TOC、TN、NH4 +、NO3 -的含量的回归方程均达到了显著水平(表 2),说明土壤 C、N 水平是影响 CH4厌氧氧化潜力非常重要的环境要素。相反,土壤 SO4 2-含量、EC 值与厌氧 CH4 氧化速率呈负相关,但未达到显著水平。值得注意的是,土壤 pH 值与厌氧 CH4 氧化速率呈负相关,且回归方程达到了显著水平。这些结果说明围垦稻田土壤的海洋性特征仍较明显,对厌氧 CH4氧化潜力具有一定的抑制作用。
3 讨论
本试验采用 13CH4 同位素标记法证实了在滨海围垦稻田和内陆南京稻田均发生了亚硝酸盐型厌氧 CH4 氧化作用。本研究使用的 13CH4 的丰度为 99%,而且起始质量分数高达 10%,这样可以最大程度地降低厌氧培养过程中 CH4 产生过程对试验结果的影响,具有较高的可信度。而且,本厌氧培养试验设置了只加 Ar 的对照处理,既可测试试验过程是否保持严格厌氧状态,又可测定厌氧过程 CH4 产生过程特征。结果显示,所试两个土样在培养过程中 CH4 产生量极低,可以忽略不计。因此,本研究采用 13CH4 同位素标记法测出的 n-DAMO 速率能客观真实地反映出土壤的厌氧 CH4 氧化潜势。其中,围垦稻田土壤的 n-DAMO 速率高于杭州湾滨海自然湿地的氧化速率(0.2~1.3 nmol 13CO2 g -1 d -1)[14],表明围垦植稻熟土化过程会促进亚硝酸盐型厌氧 CH4 氧化作用。南京稻田土壤的 n-DAMO 速率与内陆淡水湿地的氧化速率基本一致(1.8~3.6 nmol 13CO2 g -1 d -1) [7],表明内陆稻田与淡水湿地均表现出较高的 n-DAMO 速率。
不同土壤母质、不同环境条件下发育形成的稻田,受理化性质、母质类型、农田管理等因素影响,可能对土壤 CH4 氧化潜力产生重要影响。本研究发现,内陆性南京稻田的亚硝酸盐型厌氧 CH4 氧化速率显著高于滨海围垦稻田。南京稻田的成土母质为河流沉积物,黏粒比例较高,同时也形成了较为稳定的土壤团聚体,有利于提高土壤肥力[15]。在种植水稻过程中施 N 量和有机肥量较高,使得该所试土壤的有机碳、全氮含量较高。相反,围垦稻田的成土母质是长江口泥沙沉积物,砂粒较粗,蓄水保肥能力差[16],且在水稻生长过程中,地上部生物量小,根系生物量及分泌物量低,土壤的有机碳和 N 水平较低。本试验表明,土壤 TOC 和总 N 水平与厌氧 CH4 氧化速率显著正相关,可见土壤本底 C、 N 水平反映了土壤的 C、N 转化过程的基本特征,对土壤厌氧 CH4 氧化潜力有着极其重要的影响。这与 Shen 等[14]的研究结果一致,他们认为湿地土壤硝化和反硝化作用强烈,其中间产物 NO2 -可以为 M.oxyfera 菌提供底物促进 CH4 氧化过程。而且南京稻田中 TOC 含量高,可为反硝化微生物提供较多碳源,促进反硝化作用,有利于为 M.oxyfera 菌提供底物 NO2 -。相关性分析发现,n-DAMO 速率与土壤 EC 值、SO4 2-含量均呈显著负相关。这与 Wang 等[10]的结果一致。围垦稻田土壤中 SO4 2-含量比南京稻田高出一个数量级,EC 值也显著高于南京稻田,这些海洋性特征参数可能也是造成围垦稻田厌氧 CH4 氧化速率低的重要原因。这与 Li 等[13]的研究结果一致,他们认为,较高的盐度会导致 n-DAMO 细菌细胞内较高的渗透压,不利于细胞新陈代谢;而且盐度高会直接抑制亚硝酸还原酶、一氧化氮歧化酶的活性[17]。不仅如此,较高的 SO4 2-含量本身可以作为电子供体,介导硫酸盐型厌氧 CH4 氧化作用,对亚硝酸盐型厌氧 CH4 氧化过程具有抑制效应[18]。
本试验中,围垦稻田土壤 M.oxyfera-like 细菌的 16S rRNA 基因拷贝数为 (0.89~2.12)×107 copies·g-1,其变化范围与杭州湾滨海和长江口滩涂湿地的数量级一致[10,14],且显著低于南京稻田。不仅如此,M.oxyfera-like 细菌的相对丰度也表现为围垦稻田明显低于南京稻田。相关性分析发现,M.oxyfera-like 细菌的基因拷贝数与 n-DAMO 速率、土壤总氮和矿质态氮均呈显著正相关,说明 M.oxyfera-like 细菌的数量及其活性等生物学特性是导致 n-DAMO 速率产生空间变异的主控因素。然而,有报道发现,内陆湖泊沉积物中,M.oxyfera-like 细菌的基因拷贝数与土壤 TOC、总氮和矿质态氮均呈显著负相关,暗示除了土壤理化性质之外,可能还受到其它因素的重要影响,如厌氧氨氧化菌的竞争性生长等。说明 M.oxyfera-like 细菌在不同类型土壤中分布规律不尽相同,受控因素较多,有待深入研究。
本试验发现,两种类型的稻田中耕层土壤的厌氧 CH4 氧化速率均显著高于深层土壤。此前在旱地农田和西溪湿地的研究中也有类似的报道。而且,本研究还发现 M.oxyfera-like 细菌的丰度表现未表层远高于深层土壤。在之前的稻田土壤中也有报道 M.oxyfera-like 细菌仅分布在深层土壤中而在表层土壤中未能检测到[12]。现已证实,M.oxyfera-like 细菌是严格厌氧类型,其自身可以内产氧方式满足 CH4 氧化过程[19],而环境氧分压对其会有强烈抑制作用,体积分数为2%的氧气可促使 n-DAMO 细菌失去活性。照此推测,分布在湿地深处的土层其厌氧 CH4 氧化潜力应高于表层土壤。例如,白洋淀湖泊沉积物中 M.oxyferalike 细菌丰度随着深度增加有明显的增加趋势[20]。在杭州稻田的研究也有类似报道[7]。然而,对嘉兴稻田 M.oxyfera-like 细菌的研究显示,其表层(0~40 cm)丰度远高于深层(40~100 cm)丰度[12]。除了氧分压之外,亚硝酸型厌氧 CH4 氧化作用还受到许多其它因素的影响,如 CH4 底物浓度、NO2 -底物浓度、反硝化速率等。稻田耕层根系分布密度大,根际分泌物多,是稻田 CH4 产生的主要生境[21]。这种高分压 CH4浓度是 CH4氧化微生物的重要底物,对亚硝酸型厌氧 CH4 氧化过程可能具有重要的促进作用。不仅如此,施加的 N 肥大部分进入稻田耕层,进行强烈的硝化和反硝化作用,在耕层会产生较多的 NOx -等中间产物,有利于 M.oxyfera-like 细菌获取 NO2 -底物。研究发现,从热力学角度来看, M.oxyfera-like 细菌介导的甲烷厌氧化反应的标准自由能释放量远远低于反硝化菌介导的反硝化过程,在 NOx -等比较丰富而耕层稻田中其反硝化菌对 M.oxyfera-like 细菌的抑制作用较小,有利于亚硝酸型厌氧 CH4 氧化作用的进行,相反,在深层土壤中 NOx -等相对贫乏,M.oxyfera-like 细菌会收到反硝化微生物的强烈抑制,从而使得 NO2 -为底物的甲烷厌氧氧化速率减小。因此,本试验中,土壤 TOC、N 水平对亚硝酸型厌氧 CH4氧化作用起着主导作用,从而导致其耕层土壤的氧化速率显著高于深层土壤。
pH 值是影响土壤厌氧 CH4 氧化作用的重要因素[22]。本试验发现两者之间存在负相关关系。He 等[23]考察了不同 pH 条件下 M.oxyfera 细菌的甲烷氧化活性,发现其最适 pH 值是 7.6,暗示了该菌偏好弱碱性环境。本试验中围垦稻田土壤 pH 值尽管呈弱碱性,但是厌氧 CH4 速率远低于南京稻田,可能的原因是土壤中高浓度的 SO4 2-离子也可作为电子受体参与甲烷厌氧氧化,具有底物竞争效应[18]。而且土壤本底 N 水平低,N 转化产生的 NO2 -较少,在一定程度上也抑制了亚硝酸型厌氧 CH4氧化过程。
需要指出的是,稻田土壤 CH4 转化过程及功能微生物群落结构会受到诸多因素的影响,如水稻生育期、施肥量、农田管理等。本研究选取了两种不同类型的典型稻田进行比较,仅能代表所试稻田土壤的厌氧 CH4 氧化潜势。在此基础上,需要从不同气候带采集更多不同类型的稻田土壤,深入研究典型稻田厌氧 CH4 氧化作用的本质特征,为探索我国稻田温室气体减排措施提供科学依据。
4 结论
1)内陆性稻田土壤厌氧 CH4氧化速率显著高于滨海围垦稻田,其土壤 C、 N 水平和功能微生物丰度是造成两种类型稻田产生差异的主要原因。
2)两种类型稻田中,耕层土壤的厌氧 CH4氧化速率显著高于深层土壤,其耕层土壤中功能微生物丰度高、活性氮丰富是 CH4氧化潜力较高的重要原因。