摘要 航天器中的精密微电子器件布局影响着航天器局部振动特性,反过来,航天器的局部振动影响着精密微电子器件稳定性和精度.基于此,本文对航天器中微电子器件的布局进行了优化,以降低结构局部振动对微电子器件的影响。在每一步优化迭代过程中,微电子器件固定在一薄板上,薄板通过螺钉固接在航天器结构本体上,使用关注系统局部几何性质的保结构分析方法分析该薄板结构的局部振动特性。本文的优化方法和优化结果为航天器中精密微电子器件的布局设计提供参考。
本文源自蒋睿嵩; 徐萌波; 胡伟鹏, 动力学与控制学报 发表时间:2021-05-06 09:31 《动力学与控制学报》杂志,于2003年经国家新闻出版总署批准正式创刊,CN:43-1409/O3,本刊在国内外有广泛的覆盖面,题材新颖,信息量大、时效性强的特点,其中主要栏目有:能够反映学科水平的理论、实验和应用研究论文、并适量刊登综述性专题论文等。
关键词 保结构, 布局优化, 微电子器件, 广义多辛
引言
航天器中的精密电子元器件容易受到航天器工作过程中的过大惯性力作用而影响其工作性能。特别是航天器的局部振动特性,如:共振等,甚至会造成特定位置的电子元器件失效,导致航天任务失败。因此,航天器中的电子元器件往往会被集中布局在航天器某一局部空间(如图 1)[1]。
已有研究表明[1, 2],航天器中电子元器件的不同布局位置在一定程度上影响着航天器局部动力学特性,因此,航天器中的电子元器件布局优化问题是航天器设计的重要内容之一。
在布局优化方面,Liu 等人[1]将电子元器件的布局优化简化为一个 NP 问题,为本文发展微电子器件保结构优化算法提供了重要借鉴。陶鸿飞和崔升 [3]通过对压电梁、板结构振动主动控制进行了分析,实现了压电执行器粘附于悬臂梁上的最佳布局。Jia 等人[4]考虑土体与结构的相互作用,利用非连续布局优化(discontinuity layout optimization,简称DLO)方法实现了块状结构的稳定性分析。Nanayakkara 等人[5]针对张拉结构拓扑优化问题,给出了一种简单 的 布局优化 数值方法 。 Ambrozkiewicz 和 Kriegesmann[6]针对机械部件及关节设计问题,发展了能够同时实现结构拓扑和布局优化的数值方法。
上述布局优化方法虽然解决了部分工程问题中的布局优化难题,但是,对于航天器中的电子元器件的布局优化问题,上述布局优化方法并不适用,原因是航天器中电子元器件的布局优化的目标是使得电子元器件布置位置的振动特性满足电子元器件工作条件的要求,关注的是航天器局部振动特性。无限维动力学系统的保结构分析方法[7-12]的优势正是能够很好地重现动力学系统局部动力学行为,为航天器中的电子元器件布局优化提供了新的途径。无限维系统的保结构分析方法源于冯康先生针对有限维系统建立的辛几何算法[13]和 Bridges 等人针对无限维 Hamilton 系统建立的多辛算法[14, 15],已被广泛应用于航天动力学问题分析过程中。
本文将针对航天器中微电子器件的布局优化问题,通过建立微电子器件与柔性支撑薄板耦合动力学模型,发展耦合动力学模型的保结构分析方法,实现该耦合动力学问题的保结构分析,在此基础上,对电子元器件的布局进行优化,为航天器局部结构设计提供参考。
1 微电子器件与柔性薄板耦合动力学模型
本节考虑若干个微电子器件粘接在柔性薄板上(如图 2),在计入微电子器件质量、忽略微电子器件尺寸假设条件下建立其动力学控制方程。
如图 2,假定微电子器件尺寸远小于圆形柔性薄板的平面尺寸,则微电子器件的尺寸可以忽略不计,其对结构的作用简化为质点,即体现在薄板面密度参数( , ) x y 中。柔性薄板通过 8 个螺栓与航天器连接,忽略螺栓与航天器连接间隙,航天器结构通过 8 个螺栓传递载荷至薄板,引起薄板振动。
参考薄板理论[16],薄板应变能表述为: 1 2 2 2 2 2 2 2 {( ) 2(1 )[ ( ) ]}d 2 U D u u u u u xx yy p xx yy xy (1) 其 中 , u u t x y = ( , , ) 是薄板面 外挠度 , 2 2 2 {( , ) } x y x y R , 3 2 12 1( ) D E p h 为薄板抗弯刚度, E 为薄板材料的弹性模量, p 为薄板材料的泊松比,h 为薄板厚度,R 为圆形薄板的半径。薄板面外振动动能为: 1 2 ( , ) d 2 T x y u t (2)其中( , ) x y 为薄板在 ( , ) x y 处的面密度。
由变性能和面外振动动能,得到薄板振动的拉格朗日函数: 2 2 2 2 2 2 2 2 1 ( , ) d 2 1 {( ) 2(1 )[ ( ) ]}d 2 t xx yy p xx yy xy L x y u D u u u u u (3)
考虑薄板材料线性阻尼 c 及航天器结构通过螺栓 传 递 到 薄 板 上 的 冲 击 载 荷 F F t x y = ( , , ) ( 1,2, ,8) ,采用 Hamilton 变分原理,即可推导得到薄板动力学控制方程: 8 1 ( , ) ( 2 ) tt t xxxx xxyy yyyy x y u c u D u u u F (4) 需要说明的是,上述模型是在线弹性范围内建立的,考虑薄板柔性主要是因为薄板尺寸较大。
2 耦合动力学模型的保结构分析方法
通过引入正交变量: , , , ( ) , , t x x x y u u w w q u v , ( ) y y v p , 并 定 义 状 态 向 量 : T z ( , , , , , , , ) u w q v p ,薄板振动方程(4)可以写成如下多辛对称形式[17]:
M z K z K z z t x y z S (5) 上式是一个广义多辛 形 式 [7] , 其中, 8 8 1 2 , , M K K R 为反对称矩阵:
哈密尔顿函数为; 2 8 2 2 1 ( ) ( , ) 2 ( ) ( ) 2+ S x y D wq pv D u F z (6) 对圆形薄板面域: 2 2 2 {( , ) } x y x y R 采用空间步长x 和y 进行均匀剖分,并对系统(5)采用时间步长t 进行 Preissmann 离散,消去中间变量,得到与 Preissmann 格式等价的保结构差分格式: 2 2 2 1 2 2 1 2 2 2 , , . , , 3 2 1 1 , , , , , 2 4 4 4 , 1, , 1, 4 2 2 2 2 1 2, 1 ( , ) ( 4 6 4 ) 4 ( 5 10 10 5 4 ) ( 2 ) 2 ( j j j j j t i k t i k t i k t i k t i k j j j j j t i k t i k t i k t i k t i k j j j j t i k x i k x i k x i k x y i k i k u u u u u t c u u u u u t D u u u u x D u x y 2 2 2 2 2 , 1 2, 1 2 8 4 4 4 1 2 4 , 1 , , 1 1 2, 1 2 1 2 ) ( 2 ) ( ) j j j x y i k x y i k j j j j y i k y i k x i k i k u u D u u u F y (7) 其 中 : 1 2, 1 2 , 1, , 1 1, 1 1 ( ), u u u u , 1 1 , , , j j j t i k i k i k u u u , 4 , 2, 1, , 1, 2, 4 6 4 j j j j j j x i k i k i k i k i k i k u u u u u u 等。
差分格式(7)中 1 2 1 2, 1 2 ( )j F i k 依据下式确定: 1 2 1 2, 1 2 ( , , ) ( ) 0 ( , , ) j i k F j i k F j i k (8) 其中: {( , , ) ( 1) , ( 1) , ( 1) } j i k j t t j t i x x i x k y y k y 需要说明的是,公式(7)中( , ) i k 的计算依据下式确定: 0 0 ( , )= + l i k m x y 内无微电子器件内有1个微电子器件 (9) 其中, 0 为未粘接微电子器件的柔性薄板的面密度 , ( 1,2, , ) m l n l 为 柔 性 薄 板 区 域 ={( , ) ( 1) , ( 1) } l l i k i x x i x k y y k y 内微电子器件的质量,( , ) l l x y 为第 l 个微电子器件在圆形薄板上的坐标值。值得注意的是,由于薄板面内网格尺寸较小,实际的微电子器件之间由于散热等要求,可以假定一个网格内至多能粘接一个微电子器件,这一假定将会具体体现在优化问题建模过程中。
3 微电子器件布局优化模型及数值算例
考虑 n 个微电子器件粘接在同时受 8 个冲击载荷作用的柔性薄板上的情形,以 n 个微电子器件粘结处薄板振动最大加速度的加权平均值最小为优化目标,建立如下微电子器件布局优化问题:
min max{ ( , , )} . . ( ) ( ) ( , 1,2, , ) n l tt l l l l m l m w u j t x y s t x x y y x y l m n (10) 上式中, wl 为第 l 个微电子器件的权重(描述该电子器件对精度和稳定性要求), ( , , ) tt l l u j t x y 为第 l 个微电子器件粘结处薄板在 j t 时刻的面外振动加速度,该加速度值有前述建立的保结构分析方法得到。
由于本文考虑的微电子器件质量较小,对薄板面外振动影响只存在于微电子器件粘结点附近的局部区域,因此,参考已有的优化理论及方法[18, 19],本文采用的布局优化算法主要包括如下两个步骤:
① 采用保结构分析方法模拟未布置微电子器件柔性薄板面外振动,找到振动加速度较小的 n 个网格点作为 n 个微电子器件布置的初始位置(共 n! 种情况),取其中 1 max{ ( , , )} n l tt l l l w u j t x y 最小的情况确定为微电子器件布置的初始位置组合;
② 将每个微电子器件粘结位置在其初始位置附近摄动,摄动范围设定为 2 2 1/2 2( ) x y (该摄动范围是通过后续算例中试算得到的),重新模拟薄板振动,计算微电子器件加速度最大值的加权平均值 * 1 max{ ( , , )} n l tt l l l a w u j t x y ,直至两步迭代得到的 * a 相对误差小于 -6 1 10 时结束优化迭代过程,得到最终的微电子器件最优化布局位置,完成布局优化过程。
在数值算例中,系统的结构及材料参数假定为: 9 0.05, 0.5m, 10 Pa, 0.37 2.914 p c R E , h 0.002m , 2 0 1kg m , 100N F 。网格剖分步长及时间步长分别取为: x y 0.002m, t 0.001s。
假定每个微电子器件质量和权重都相等, 0.01 1 kg, ( 1,2, , ) m w l n l l n n ,则优化算法第 ①步中涉及到的 n! 种布局组合情况退化为一种情形。考虑 n 2,3,4 三种较为简单的情况,对微电子器件布置位置进行优化。
图 3 给出了上述三种情况下,微电子器件布局优化过程中微电子器件加速度最大值的加权平均值 * 1 max{ ( , , )} n l tt l l l a w u j t x y 随着迭代次数 N 的演化过程(在优化程序中设定迭代次数为 200 而不以 * a 相对误差为迭代终止条件)。
从图 3 可以看出,微电子器件个数越少,布局优化需要的迭代次数也越少。以 * a 相对误差小于 -6 1 10 为迭代终止条件时,当 n 2 时,需要的迭代次数为 106;当 n 3 时,需要的迭代次数为 138;当 n 4 时,需要的迭代次数为 165,迭代终止时,各种情形下各微电子器件位置坐标见表 1(注:由于结构的对称性,微电子器件布局优化结果并非唯一,表中只是给出了其中的一种优化结果)。
4 结论与讨论
微电子器件在航天器中的布局与航天器局部动力学行为息息相关,对微电子器件的布局进行优化不仅有利于航天器局部减振,也有利于保证微电子器件的工作性能。本文正是基于以上背景,建立了粘结有若干个微电子器件的柔性薄板在冲击荷载序列作用下的振动方程,基于广义多辛理论发展了该柔性薄板振动问题的保结构分析方法对该薄板振动问题进行模拟,基于模拟结果,以微电子器件加速度最大值的加权平均值最小为优化目标对微电子器件的布局位置进行优化,得到了满足约束条件的布局优化结果,为航天器中的微电子器件的布局优化设计提供了新的途径。
需要说明的是,为方便后续的动力学分析和优化设计,本文在薄板振动问题的动力学建模过程中,忽略了薄板厚度、微电子器件尺寸等因素,在布局优化设计过程中,不区分微电子器件的质量差别和权重差别,并仅让微电子器件布置位置在初始位置附近的一个很小范围摄动,这些简化虽然能够加快优化收敛速度,但是不能从理论上证明布局优化结果的全局最优性。