一个专业的论文、出书、专利服务平台

品质、专业的

论文指导服务

以问题为中心”的高中数学教学模式建构

时间:2014-09-11分类:教育教学

  所谓数学问题,就是指在数学知识的学习中从思维层面产生的疑难和矛盾。数学问题一般可以归纳为三种类型,即关于“是什么”、“为什么”和“怎么做”等三类。关于“是什么”的问题一般属于简单问题,而关于“为什么”和“怎么做”则属于复杂问题,也是最有价值的问题。例如,高中数学中“什么是等差数列?”就属于简单问题,而“为什么有反函数的函数不一定是单调函数?”就属于复杂的有价值的数学问题。

  以问题为中心的高中数学教学就是要抓住数学知识学习的关键环节,抓住思维的疑难和矛盾,产生问题意识,提出问题,然后通过探究寻求一定的思维路径,最终解决问题和提出新问题的教学模式。

  2、“以问题为中心”的高中数学教学模式的建构。

  第一,以解决“是什么”为基础的“事实性知识”的学习启动教学。

  以事实性知识为基础启动数学教学,就是指数学教学探究活动应该从引导学生学习和掌握数学基本概念开始,完成基本的知识储备,解决“是什么”一类的问题,为新的问题的产生和解决作准备。例如,高中数学在教学《同角三角函数的基本关系》内容时,所要储备的事实性知识就是“三角函数的定义”,也就是首先要让学生明确什么是“sin”,“cos”…等,然后才能够提出“这些关于的三角函数之间有何关系?”这类问题,进而将教学推进到第二个阶段。

  第二,以“为什么”和“怎么做”两类数学问题的提出和解决为中心,展开问题探究,建构数学问题领域所蕴含的“原理性知识”和“技能性知识”的建构学习教学。

  如前所述,在学生明确了什么是“sin”,“cos”…等事实性知识后,提出“这些函数之间有何关系?”。教师可以引导学生观察:

  之间有何关系?

  学生容易发现:

  至此,教师可以提出:这个关系对你有何启发?

  此时,一般的学生都能够由特殊到一般地归纳出

  于是,“为什么成立?”

  以及“等式的成立有何条件要求?”等问题就自然产生了。

  当“为什么成立”这类问题提出来后,教师的任务就是与学生一起互动探究,共同建构关于等式为什么成立的一系列“原理性知识”和“技能性知识”。

  不难看出,以解决“为什么”和“怎么做”为目标,以原理性或技能性知识的建构为载体的第二流程是“以问题为中心”的数学教学模式的关键环节。在这个环节中,需要师生以“对话”方式共同“建构”和“生成”知识。教师不可以代替学生的思维,要充当学习的参与者,引导着,组织者和促进者。只有这样,学生才能够在问题的解决中建构知识的意义,发展心智和思维能够。

  第三,以数学问题解决策略的评价和反思促进学生思维升华的心智提升教学。

  当师生通过共同探究或学生独立探究解决了“为什么”和“怎么做”这类问题之后,教学进入第三个环节,就是让学生展示自己解决问题的策略。这样就有可能呈现学生群体对于同一个问题的不同解题思路。在学生展示了自己的问题解决策略基础上,教师可以激励其他学生对这些解决策略进行评价,在评价的基础上教师再给予激励性的点评。需要指出的是,在数学问题解答策略的点评过程中,教师一句恰如其分的表扬,一个激励的眼神,一个亲切的微笑和一个积极的手势都会对学生的深入学习和探究产生极大的鼓舞,给学生的发展增添无尽的动力。

  教学至此,学生的学生热情一定会空前的高涨,学生的思维一定能够得到升华,学生的心智必能得到提升,新问题的产生也就水到渠成了。

  通过以上分析,我们已经明确了“以问题为中心”的教学模式有三个流程,其中第一个流程是奠基程序,第二个流程是核心程序,第三个流程是升华程序。那么,“以问题为中心”的数学教学模式的实施需要注意那些问题呢?

  二、“以问题为中心”的高中数学教学模式的实施需要注意以下三个方面

  1、教师要善于创设问题情景,培养学生的问题意识。

  教学实践中,教师可以通过下列途径为学生创设问题情境,以培养学生的问题意识。

  (1)联系生活实际,创设问题情景

  例如,在《等比数列求和公式》的教学中,教师除了可以讲传统的“国际象棋”的故事外,还可以自己构建一个更接近学生生活实际的例子。例如,笔者曾经给学生这样讲:“同学们,现在我们来作一个游戏。假如从今天开始,我在一个月内每天给你10元钱,条件是,在这个月内,你必须第一天回扣我1分钱,第二天回扣我2分钱,第三天回扣我4分钱,…,即今后每一天回扣给我的钱数是前一天的2倍,有谁愿意吗?”。这个有趣的例子一举,学生顿时跃跃欲试,对问题产生了浓厚的探究兴趣。

  当通过等比数列求和法将问题解决之后,学生才发现30天所回扣的“感觉很少”的钱实际上会超过1000万元。至此,学生才茅塞顿开,并从中领略到了数学的奇妙。

  (2)利用认知冲突,创设问题情境。

  例如,在教学“线性规划”内容,引入教学时,教师可以提出下面的问题让学生解答:

  当教师指出这个答案是错误的,而准确的答案应该是最小值为13,最大值为17时,学生会很疑惑,便产生了认知冲突,教师便可以引入“线性规划”的相关问题了。

  2、需要教师营造民主的教学氛围,让学生敢于提出数学问题。

  无论是课内还是课外,要激发学生的数学问题意识,需要师生之间的平等对话,需要建立民主的教学氛围。教师要善于鼓励学生质疑问难。高中学生具有强烈的好奇心强,求知欲和表现欲。教师在教学活动中要充分保护学生的好奇心和尊重学生的求知欲。师生之间需要建立民主、平等、和谐的人际关系。教师要努力消除学生在数学学习中的紧张和焦虑心理,让学生轻松、愉快的学习数学,消除对数学的神秘感,促进学生在宽松的环境中产生问题意识,进而自己提出问题。长此以往,学生将会从教师的思维中学会提出有价值的问题。

  3、教师要尽可能引导学生提出有价值的问题。

  高中学生的思维已经发展到理性阶段,对于“是什么”的简单问题凭知识的记忆和简单的问答就能够解决,因此不应该成为课堂教学的中心问题。例如,什么是指数函数?什么是椭圆?这类问题,虽然也很重要,但是这类问题的解决可以通过学生练习达成,不应该占用课堂中太多的教学时间。而象“如何推导椭圆的标准方程?”或者 “方程在坐标系内对应的曲线是什么?”这类问题就可以成为课堂教学的中心问题加以探究解决。

  综上所述,“以问题为中心”的数学教学模式的构建需经历事实性知识的启动教学、中心问题的提出和解决教学和思维升华的提升教学三个流程,同时要注意创设问题情境、营造民主的教学氛围和提出有价值的问题等三个方面。笔者相信,随着新课程改革的深入,广大的高中数学教师一定能够在实践中逐步体会到“以问题为中心”的数学教学模式对于增强高中数学课堂教学的有效性是事半功倍的。

获取免费资料

最新文章